Amyloid precursor protein (APP), a key molecule of Alzheimer disease, is metabolized in 2 antagonist pathways generating the soluble APP alpha (sAPPα) having neuroprotective properties and the beta amyloid (Aβ) peptide at the origin of neurotoxic oligomers, particularly Aβ1-42. Whether extracellular Aβ1-42 oligomers modulate the formation and secretion of sAPPα is not known. We report here that the addition of Aβ1-42 oligomers to primary cortical neurons induced a transient increase in α-secretase activity and secreted sAPPα 6-9 hours later. Preventing the generation of sAPPα by using small interfering RNAs (siRNAs) for the α-secretases ADAM10 and ADAM17 or for APP led to increased Aβ1-42 oligomer-induced cell death after 24 hours. Neuronal injuries due to oxidative stress or growth factor deprivation also generated sAPPα 7 hours later. Finally, acute injection of Aβ1-42 oligomers into wild-type mouse hippocampi induced transient secretion of sAPPα 48-72 hours later. Altogether, these data suggest that neurons respond to stress by generating sAPPα for their survival. These data must be taken into account when interpreting sAPPα levels as a biomarker in neurological disorders.
Keywords: Beta amyloid 1–42 oligomers; Neuron; Soluble amyloid precursor protein alpha; Stress.
Copyright © 2017 Elsevier Inc. All rights reserved.