High-resolution spectroscopy in the 1-10 μm region has never been fully tackled for the lack of widely-tunable and practical light sources. Indeed, all solutions proposed thus far suffer from at least one of three issues: they are feasible only in a narrow spectral range; the power available for spectroscopy is limited; the frequency accuracy is poor. Here, we present a setup for high-resolution spectroscopy, whose approach can be applied in the whole 1-10 μm range. It combines the power of quantum cascade lasers (QCLs) and the accuracy achievable by difference frequency generation using an orientation patterned GaP crystal. The frequency is measured against a primary frequency standard using the Italian metrological fibre link network. We demonstrate the performance of the setup by measuring a vibrational transition in a highly-excited metastable state of CO around 6 μm with 11 digits of precision.