Pediatric Cytochrome P450 Activity Alterations in Nonalcoholic Steatohepatitis

Drug Metab Dispos. 2017 Dec;45(12):1317-1325. doi: 10.1124/dmd.117.077644. Epub 2017 Oct 6.

Abstract

Variable drug responses depend on individual variation in the activity of drug-metabolizing enzymes, including cytochrome P450 enzymes (CYP). As the most common chronic liver disease in children and adults, nonalcoholic steatohepatitis (NASH) has been identified as a source of significant interindividual variation in hepatic drug metabolism. Compared with adults, children present age-related differences in pharmacokinetics and pharmacodynamics. The purpose of this study was to determine the impact of fatty liver disease severity on the activity of a variety of CYP enzymes in children and adolescents. Healthy and nonalcoholic fatty liver disease pediatric subjects aged 12-21 years inclusive received an oral cocktail of four probe drugs: caffeine (CYP1A2, 100 mg), omeprazole (CYP2C19, 20 mg), losartan (CYP2C9, 25 mg), and midazolam (CYP3A4, 2 mg). Venous blood and urine were collected before administration and 1, 2, 4, and 6 hours after administration. Concentrations of the parent drugs and CYP-specific metabolites were quantified in plasma and urine using liquid chromatography with tandem mass spectrometry. In plasma, the decreased metabolic area under the curve (AUC) ratio, defined as the metabolite AUC to parent AUC, of omeprazole indicated significant decreases of CYP2C19 (P = 0.002) enzymatic activities in NASH adolescents, while the urine analyses did not show significant differences and were highly variable. A comparison between the present in vivo pediatric studies and a previous ex vivo study in adults indicates distinct differences in the activities of CYP1A2 and CYP2C9. These data demonstrate that pediatric NASH presents an altered pattern of CYP activity and NASH should be considered as a confounder of drug metabolism for certain CYP enzymes. These differences could lead to future investigations that may reveal unexpected variable drug responses that should be considered in pediatric dosage recommendations.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Aging / metabolism
  • Area Under Curve
  • Child
  • Chromatography, High Pressure Liquid
  • Cytochrome P-450 CYP1A2 / genetics
  • Cytochrome P-450 CYP1A2 / metabolism
  • Cytochrome P-450 CYP2C9 / genetics
  • Cytochrome P-450 CYP2C9 / metabolism
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Female
  • Genotype
  • Humans
  • Male
  • Non-alcoholic Fatty Liver Disease / enzymology*
  • Pharmaceutical Preparations / metabolism
  • Young Adult

Substances

  • Pharmaceutical Preparations
  • Cytochrome P-450 Enzyme System
  • CYP2C9 protein, human
  • Cytochrome P-450 CYP2C9
  • CYP1A2 protein, human
  • Cytochrome P-450 CYP1A2