Background: miR-203a-3p was reported as a tumor suppressor and disregulated in many malignancies including nasopharyngeal carcinoma (NPC). However, its function in tumor growth and metastasis in NPC has rarely been reported.
Methods: The expression level of miR-203a-3p in human NPC tissues and cell lines was detected via real-time PCR (RT-PCR). Cell proliferation, migration and invasion were assessed in vitro by MTT, colony formation and transwell assay, respectively. The function of miR-203a-3p in vivo was detected through NPC xenograft tumor growth and lung metastatic mice model. Dual-luciferase reporter assay was used to identify the direct target of miR-203a-3p.
Results: The expression of miR-203a-3p was decreased in NPC tissues and cell lines in comparison with normal nasopharyngeal tissues and cell line. Ectopic expression of miR-203a-3p inhibited while inhibiting miR-203a-3p expression increased NPC cell proliferation, migration and invasion in vitro. MR-203a-3p overexpression suppressed xenograft tumor growth and lung metastasis in vivo. LASP1 was identified as a direct target of miR-203a-3p, which was confirmed by real-time PCR and western blotting assay. Ectopic expression of LASP1 partially reversed miR-203a-3p-mediated inhibition on proliferation, migration and invasion in NPC cells.
Conclusion: Collectively, miR-203a-3p suppresses tumor growth and metastasis through targeting LASP1 in NPC. The newly identified miR-203a-3p/LASP1 pathway provides further insights into the initiation and progression of NPC, which may represent a novel therapeutic target for NPC.
Keywords: LASP1; Nasopharyngeal carcinoma; Proliferation; metastasis; miR-203a-3p.