Recent interest in flexible electronics has led to a paradigm shift in consumer electronics, and the emergent development of stretchable and wearable electronics is opening a new spectrum of ubiquitous applications for electronics. Organic electronic materials, such as π-conjugated small molecules and polymers, are highly suitable for use in low-cost wearable electronic devices, and their charge-carrier mobilities have now exceeded that of amorphous silicon. However, their commercialization is minimal, mainly because of weaknesses in terms of operational stability, long-term stability under ambient conditions, and chemical stability related to fabrication processes. Recently, however, many attempts have been made to overcome such instabilities of organic electronic materials. Here, an overview is provided of the strategies developed for environmentally robust organic electronics to overcome the detrimental effects of various critical factors such as oxygen, water, chemicals, heat, and light. Additionally, molecular design approaches to π-conjugated small molecules and polymers that are highly stable under ambient and harsh conditions are explored; such materials will circumvent the need for encapsulation and provide a greater degree of freedom using simple solution-based device-fabrication techniques. Applications that are made possible through these strategies are highlighted.
Keywords: environmental stability; organic electronics; organic field-effect transistors; organic light-emitting diodes; organic photovoltaics.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.