NLRP3 inflammasome is a novel therapeutic target for inflammatory bowel disease (IBD). The aim of this study was to investigate the anti-inflammatory effect of a bioactive flavonoid-oroxylin A on the treatment of dextran sulfate sodium (DSS)-induced murine colitis via targeting NLRP3 inflammasome. In this study, we found that oroxylin A attenuated experimental colitis in mice, including loss of body weights, shortening of the colon lengths and infiltration of inflammatory cells. The production of IL-1β, IL-6 and TNF-α in colon was also markedly reduced by oroxylin A. Moreover, oroxylin A significantly decreased the expression of NLRP3 in intestinal mucosal tissue. In addition, NLRP3-/- mice were observably protected from DSS-induced acute colitis, and oroxylin A treatment had no effects on attenuating inflammation in NLRP3-/- mice. Further study found that the activation of NLRP3 inflammasome was dose-dependently inhibited by oroxylin A in both THP-Ms and BMDMs, followed by decrease in the cleavage of caspase-1 and secretion of IL-1β. This inhibitory effect of oroxylin A was due to restraint of the NLRP3 protein expression and the inflammasome formation in macrophages. Furthermore, the reduction of NLRP3 protein expression by oroxylin A was dependent on the inhibition of NF-κB p65 expression and nuclear translocation. Besides, oroxylin A directly suppressed the ASC speck formation and the inflammasome assembly which in turn restrained the activation of NLRP3 inflammasome. Our findings demonstrated that oroxylin A inhibited NLRP3 inflammasome activation and could potentially be used for the treatment of IBD.
Keywords: DSS-induced colitis; NF-κB; NLRP3 inflammasome; inflammatory bowel disease; oroxylin A.