Low toxic maghemite nanoparticles for theranostic applications

Int J Nanomedicine. 2017 Aug 31:12:6365-6371. doi: 10.2147/IJN.S140368. eCollection 2017.

Abstract

Background: Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine.

Methods: Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing).

Results: TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus.

Conclusion: Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy.

Keywords: ROS; SPIONs; maghemite; magnetic nanoparticles; theranostics in oncology; toxicity.

MeSH terms

  • Ferric Compounds / chemistry*
  • HeLa Cells
  • Humans
  • Microscopy, Electron, Transmission
  • Nanoparticles / chemistry*
  • Nanoparticles / therapeutic use*
  • Nanoparticles / toxicity
  • Photoelectron Spectroscopy
  • Reactive Oxygen Species / metabolism
  • Spectroscopy, Mossbauer
  • Theranostic Nanomedicine / methods*
  • X-Ray Absorption Spectroscopy
  • X-Ray Diffraction

Substances

  • Ferric Compounds
  • Reactive Oxygen Species
  • ferric oxide