Classification and conservation priority of five Deccani sheep ecotypes of Maharashtra, India

PLoS One. 2017 Sep 14;12(9):e0184691. doi: 10.1371/journal.pone.0184691. eCollection 2017.

Abstract

Characterization of Indian livestock breeds has mostly been limited to single breed/population focused on either physical description of traditionally recognized breeds/populations or to their genetic description. Usually, morphological and genetic characterization has taken place in isolation. A parallel morphological characterization of genetically identified breeds or genetic characterization of morphologically described breeds is mostly missing, and their conservation priorities have largely been based on solely considering degree of endangerment. This study uses parallel approach based on morphometric and genetic differentiation for classification of five sheep ecotypes of Maharashtra state, and sets their conservation priority using threat parameters, current utilities/merits and contribution to genetic diversity. A total of 1101 animals were described for 7 body measurements for morphometric characterization. From this sample set, 456 animals were genotyped for 25 microsatellite markers for genetic characterization. Conservation priorities were assessed combining genetic and non-genetic factors. All studied traits varied significantly among ecotypes (p<0.05). All morphometric traits exhibited substantial sexual dimorphism except ear length. Males were 42% heavier than females. Madgyal sheep were the largest amongst the five ecotypes. In the stepwise discriminant analysis, all measured traits were significant and were found to have potential discriminatory power. Tail length was the most discriminatory trait. The Mahalanobis distance of the morphological traits between Kolhapuri and Madgyal was maximum (12.07) while the least differentiation was observed between Madgyal and Solapuri (1.50). Discriminant analysis showed that 68.12% sheep were classified into their source population. The Sangamneri sheep showed least assignment error (22%) whilst Solapuri exhibited maximum error level (41%). A total of 407 alleles were observed, with an average of 16.28 alleles per locus. Sufficient levels of genetic diversity were observed in all the ecotypes with observed heterozygosity values exceeding 0.47 and gene diversity values exceeding 0.76. About 6% of the total genetic variation was explained by population differences (FST = 0.059). Pairwise FST values indicated least differentiation between Solapuri and Madgyal (0.025). In terms of genetic distances, Kolhapuri and Lonand were most closely related (Ds = 0.177). The most probable structure clustering of the five studied populations was at K = 5. The study showed a fair congruence between the dendrogram constructed on the basis of Mahalanobis distances and Nei's as well as Reynolds genetic distances. The findings gave highest conservation priority to Lonand and least to Solapuri ecotype.

MeSH terms

  • Animals
  • Conservation of Natural Resources / methods
  • Ecotype
  • Female
  • Genotyping Techniques / methods*
  • India
  • Male
  • Microsatellite Repeats
  • Phylogeny
  • Principal Component Analysis
  • Sequence Analysis, DNA / methods*
  • Sex Characteristics
  • Sheep / classification*
  • Sheep / genetics*
  • Species Specificity

Grants and funding

The authors received no specific funding for this work. The project was part of institute funding by Indian Council of Agricultural Research.