Purpose of the review: Herein we dissect mechanisms behind the dissemination of cancer cells from primary tumor site to the bone marrow, which are necessary for metastasis development, with a specific focus on multiple myeloma.
Recent findings: The ability of tumor cells to invade vessels and reach the systemic circulation is a fundamental process for metastasis development; however, the interaction between clonal cells and the surrounding microenvironment is equally important for supporting colonization, survival, and growth in the secondary sites of dissemination. The intrinsic propensity of tumor cells to recognize a favorable milieu where to establish secondary growth is the basis of the "seed and soil" theory. This theory assumes that certain tumor cells (the "seeds") have a specific affinity for the milieu of certain organs (the "soil"). Recent literature has highlighted the important contributions of the vascular niche to the hospitable "soil" within the bone marrow. In this review, we discuss the crucial role of stromal cells and endothelial cells in supporting primary growth, homing, and metastasis to the bone marrow, in the context of multiple myeloma, a plasma cell malignancy with the unique propensity to primarily grow and metastasize to the bone marrow.
Keywords: Bone marrow stroma; Bone marrow vasculature; Cancer-induced bone disease; Multiple myeloma.