A genetically inducible porcine model of intestinal cancer

Mol Oncol. 2017 Nov;11(11):1616-1629. doi: 10.1002/1878-0261.12136. Epub 2017 Oct 10.

Abstract

Transgenic porcine cancer models bring novel possibilities for research. Their physical similarities with humans enable the use of surgical procedures and treatment approaches used for patients, which facilitates clinical translation. Here, we aimed to develop an inducible oncopig model of intestinal cancer. Transgenic (TG) minipigs were generated using somatic cell nuclear transfer by handmade cloning. The pigs encode two TG cassettes: (a) an Flp recombinase-inducible oncogene cassette containing KRAS-G12D, cMYC, SV40LT - which inhibits p53 - and pRB and (b) a 4-hydroxytamoxifen (4-OHT)-inducible Flp recombinase activator cassette controlled by the intestinal epithelium-specific villin promoter. Thirteen viable transgenic minipigs were born. The ability of 4-OHT to activate the oncogene cassette was confirmed in vitro in TG colonic organoids and ex vivo in tissue biopsies obtained by colonoscopy. In order to provide proof of principle that the oncogene cassette could also successfully be activated in vivo, three pigs were perorally treated with 400 mg tamoxifen for 2 × 5 days. After two months, one pig developed a duodenal neuroendocrine carcinoma with a lymph node metastasis. Molecular analysis of the carcinoma and metastasis confirmed activation of the oncogene cassette. No tumor formation was observed in untreated TG pigs or in the remaining two treated pigs. The latter indicates that tamoxifen delivery can probably be improved. In summary, we have generated a novel inducible oncopig model of intestinal cancer, which has the ability to form metastatic disease already two months after induction. The model may be helpful in bridging the gap between basic research and clinical usage. It opens new venues for longitudinal studies of tumor development and evolution, for preclinical assessment of new anticancer regimens, for pharmacology and toxicology assessments, as well as for studies into biological mechanisms of tumor formation and metastasis.

Keywords: inducible intestinal cancer; oncopig; tissue-specific activation; transgenic porcine model.

MeSH terms

  • Animals
  • Animals, Genetically Modified / genetics*
  • Cloning, Organism / methods*
  • Disease Models, Animal*
  • Embryo Culture Techniques / methods
  • Embryo Transfer / methods
  • Female
  • Humans
  • Intestinal Mucosa / metabolism
  • Intestinal Neoplasms / genetics*
  • Intestinal Neoplasms / pathology
  • Intestines / pathology
  • Nuclear Transfer Techniques*
  • Swine
  • Swine, Miniature / genetics*