Background/objective: Loss of domain often complicates attempts at delayed wound closure in regions of high tension. Wound temporization with traction-assisted internal negative pressure wound therapy (NPWT), using bridging retention sutures, can minimize the effects of edema and elastic recoil that contribute to progressive tissue retraction over time. The investigators evaluated the safety and efficacy of this technique for complex wound closure.
Materials and methods: Between May 2015 and November 2015, 18 consecutive patients underwent staged reconstruction of complex and/or contaminated soft tissue defects utilizing either conventional NPWT or modified NPWT with instillation and continuous dermatotraction via bridging retention sutures. Instillation of antimicrobial solution was reserved for wounds containing infected/exposed hardware or prosthetic devices. Demographic data, wound characteristics, reconstructive outcomes, and complications were reviewed retrospectively.
Results: Eighteen wounds were treated with traction-assisted internal NPWT using the conventional (n = 11) or modified instillation (n = 7) technique. Defects involved the lower extremity (n = 14), trunk (n = 3), and proximal upper extremity (n = 1), with positive cultures identified in 12 wounds (67%). Therapy continued for 3 to 8 days (mean, 4.3 days), resulting in an average wound surface area reduction of 78% (149 cm² vs. 33 cm²) at definitive closure. Seventeen wounds (94%) were closed directly, whereas the remaining defect required coverage with a local muscle flap and skin graft. At final follow-up (mean, 12 months), 89% of wounds remained closed. In 2 patients with delayed, recurrent periprosthetic infection (mean, 7.5 weeks), serial debridement/hardware removal mandated free tissue transfer for composite defect reconstruction.
Conclusion: Traction-assisted internal NPWT provides a safe and effective alternative to reduce wound burden and facilitate definitive closure in cases where delayed reconstruction of high-tension wounds is planned.