Background: Arachidonate-5-lipoxygenase (5-LO) activity and increased leukotriene B4 (LTB4) production have been implicated in various inflammatory conditions. Increased production of leukotrienes has been associated with periodontal diseases; however their relative contribution to the tissue destruction is unknown. We used an orally-active specific 5-LO inhibitor to assess its role in inflammation and bone resorption in a murine model of lipopolysaccharide (LPS)-induced periodontal disease.
Methods: Periodontal disease was induced in Balb/c mice by direct injections of LPS into the palatal gingival tissues adjacent to the upper first molars 3 times/week for four weeks. Animals were treated with the biochemical inhibitor (2 mg/Kg/day) or the same volume of the vehicle by oral gavage. µCT analysis was used to assess bone resorption. EIA determined leukotriene B4, and ELISAs quantified TNF, IL-12 and IL-10 in the gingival tissues. Histological sections were used for the morphometric analysis (number neutrophils and mononuclear cells). Osteoclasts were counted in TRAP-stained sections.
Results: Administration of 5-LO inhibitor effectively reduced the production of LTB4 (23.7% decrease) and significantly reduced TNF and IL-12 levels in the gingival tissues. Moreover, reduction of LTB4 levels in the gingival tissues was associated with a significant decrease in bone resorption and a marked reduction in the number of osteoclasts and inflammatory cells.
Conclusion: 5-LO activity plays a relevant role in inflammation and bone resorption associated with the LPS model of experimental periodontal disease.
Keywords: bone resorption; inflammation; innate immunity; leukotrienes; periodontitis.