Solution-processed black phosphorus quantum-dot-based resistive random access memory is demonstrated with tunable characteristics, multilevel data storage, and ultrahigh ON/OFF ratio. Effects of the black phosphorous quantum dots layer thickness and the compliance current setting on resistive switching behavior are systematically studied. Our devices can yield a series of SET voltages and current levels, hence having the potential for practical applications in the flexible electronics industry.
Keywords: black phosphorus quantum dots; flexible memory; multilevel datastorage; resistive switching; tunable memory characteristics.