We have previously demonstrated the presence of specific binding sites for somatostatin on plasma membranes from pancreatic acinar cells. In the present study we attempted to characterize the fate of receptor-bound 125I-[Tyr11]somatostatin. Internalization of somatostatin was rapid (reaching a plateau at 20% of the cell-associated specific radioactivity) and temperature dependent. To follow the processing of bound somatostatin, acini were incubated with 125I-[Tyr11]somatostatin at 5 degrees C during 16 h then, after washing, incubated at 37 degrees C for 90 min in fresh medium. Surface-bound somatostatin decreased rapidly, whereas radioactivity increased in the cell interior and the incubation medium. Intracellular and membrane-bound radioactivity was mainly intact 125I-[Tyr11]somatostatin. Degradation occurred at the plasma membrane level and led to iodotyrosine production. After 15 min of incubation, 15% of the initially surface-bound 125I-[Tyr11]somatostatin was compartmentalized within the cell, mainly in the microsomal fraction. After 30 min, a significant increase in radioactivity appeared in the nuclear fraction. These results indicate that the major part of somatostatin cellular degradation takes place at the plasma membrane level. Within the cell, somatostatin is routed to the nucleus via particular fractions sedimenting with microsomal vesicles.