Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro

PLoS One. 2017 Aug 17;12(8):e0183572. doi: 10.1371/journal.pone.0183572. eCollection 2017.

Abstract

Macrophages are a heterogeneous cell population playing a pivotal role in tissue homeostasis and inflammation, and their phenotype strongly depends on the micromilieu. Despite its increasing importance as a translational animal model for human diseases, there is a considerable gap of knowledge with respect to macrophage polarization in dogs. The present study comprehensively investigated the morphologic, phenotypic, and transcriptomic characteristics of unstimulated (M0), M1- (GM-CSF, LPS, IFNγ-stimulated) and M2- (M-CSF, IL-4-stimulated)-polarized canine blood-derived macrophages in vitro. Scanning electron microscopy revealed distinct morphologies of polarized macrophages with formation of multinucleated cells in M2-macrophages, while immunofluorescence employing literature-based prototype-antibodies against CD16, CD32, iNOS, MHC class II (M1-markers), CD163, CD206, and arginase-1 (M2-markers) demonstrated that only CD206 was able to discriminate M2-macrophages from both other phenotypes, highlighting this molecule as a promising marker for canine M2-macrophages. Global microarray analysis revealed profound changes in the transcriptome of polarized canine macrophages. Functional analysis pointed out that M1-polarization was associated with biological processes such as "respiratory burst", whereas M2-polarization was associated with processes such as "mitosis". Literature-based marker gene selection revealed only minor overlaps in the gene sets of the dog compared to prototype markers of murine and human macrophages. Biomarker selection using supervised clustering suggested latexin (LXN) and membrane-spanning 4-domains, subfamily A, member 2 (MS4A2) to be the most powerful predicting biomarkers for canine M1- and M2-macrophages, respectively. Immunofluorescence for both markers demonstrated expression of both proteins by macrophages in vitro but failed to reveal differences between canine M1 and M2-macrophages. The present study provides a solid basis for future studies upon the role of macrophage polarization in spontaneous diseases of the dog, a species that has emerging importance for translational research.

MeSH terms

  • Animals
  • Biomarkers / blood
  • Cell Polarity
  • Cells, Cultured
  • Cluster Analysis
  • Dogs
  • Gene Expression Profiling
  • Immunohistochemistry
  • Immunophenotyping
  • Interleukin-4 / metabolism
  • Macrophage Colony-Stimulating Factor / metabolism
  • Macrophages / immunology
  • Macrophages / metabolism*
  • Macrophages / ultrastructure
  • Microscopy, Electron, Scanning
  • Transcriptome*

Substances

  • Biomarkers
  • Interleukin-4
  • Macrophage Colony-Stimulating Factor

Grants and funding

This study was in part supported by the German Research Foundation (FOR 1103; BA 815/10-2 and UL 421/1-2) and in part by the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Franziska Heinrich was supported by the German National Academic Foundation, Bonn, Germany. AK and UD are employed by the commercial company Boehringer Ingelheim Pharma GmbH & Co. KG. The funder provided support in the form of salaries for authors [AK, UD], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.