Spectroscopic characterization of the on-surface induced (cyclo)dehydrogenation of a N-heteroaromatic compound on noble metal surfaces

Phys Chem Chem Phys. 2017 Aug 23;19(33):22454-22461. doi: 10.1039/c7cp03955g.

Abstract

New nanoarchitectures can be built from polycyclic aromatic hydrocarbons (PAHs) by exploiting the capability of some metal surfaces for inducing cyclodehydrogenation reactions. This bottom-up approach allows the formation of nanostructures with a different dimensionality from the same precursor as a consequence of the diffusion and coupling of the PAHs adsorbed on the surface. In this work we present a thorough study, by means of a combination of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure and scanning tunneling microscopy with first principle calculations of the structural and chemical transformations undergone by pyridyl-substituted dibenzo[5]helicene on three coinage surfaces, namely Cu(110), Cu(111) and Au(111). Upon annealing, on-surface chemical reactions are promoted affecting the adsorbate/substrate and the molecule/molecule interactions. This thermally induced process favours the transformation from diffusing isolated molecules to polymeric nanographene chains and finally to N-doped graphene.