Image contrast afforded by tissue longitudinal (T1) and transverse (T2) relaxation times is central to the success of modern MRI. Here, a recently-proposed 'spectroscopy with linear algebraic modeling' (SLAM) method is adapted to dramatically accelerate relaxation time imaging at 3 Tesla in phantoms, the abdomens of six volunteers and in six brain tumor patients.. SLAM is validated by omitting up to 15/16ths (94%) of the data acquired retroactively from inversion recovery and multi-echo spin-echo sequences, and proactively applied to accelerate abdominal and brain tumor T1 and T2 measurements by up to 16-fold in humans..