Purpose: This study compared 68Gallium-prostate-specific-membrane-antigen based Positron-emission-tomography (68Ga-PSMA-PET) and 99metastabletechnetium-3,3-diphospho-1,2-propanedicarbonacid (99mTc-DPD-SPECT) in performing skeletal staging in prostate cancer (PC) patients and evaluated the additional value of the information from low-dose-computed tomography (CT).
Materials and methods: In this retrospective study, 54 patients who received 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT within 80 days were extracted from our database. Osseous lesions were classified as benign, malignant or equivocal. Lesion, region and patient based analysis was performed with and without CT fusion. The reference standard was generated by defining a best valuable comparator (BVC) containing information from all available data.
Results: In the patient based analysis, accuracies measured as "area-under-the-curve" (AUC) for 68Ga-PSMA-PET, 99mTc-SPECT, 68Ga-PSMA-PET/CT and 99mTc-SPECT/CT were 0.97-0.96, 0.86-0.83, 1.00 and 0.83, respectively (p<0.05) (ranges = optimistic vs. pessimistic view). Region based analysis resulted in the following sensitivities and specificities: 91.8-97.7%, 100-99.5% (PET); 61.2-70.6%, 99.8-98.3% (SPECT); 97.7%, 100% (PET/CT), 69.4% and 98.3% (SPECT/CT) (p<0.05). The amount of correct classifications of equivocal lesions by CT was significantly higher in PET (100%) compared to SPECT (52.4%) (p<0.05).
Conclusion: 68Ga-PSMA-PET outperforms 99mTc-DPD-SPECT in detecting bone metastases in PC patients. Additional information from low-dose-CT resulted in a significant reduction in equivocal lesions in both modalities, however 68Ga-PSMA-PET benefited most.
Key points: • Ga-PSMA-PET outperforms 99m Tc-DPD-SPECT in skeletal staging in prostate cancer patients • Proportion of equivocal decisions was significantly reduced by CT-fusion in both modalities • Ga-PSMA-PET benefits more from CT information, compared to 99m Tc-DPD-SPECT.
Keywords: Bone tissue; Neoplasm metastasis; PSMA; Positron emission tomography computed tomography; Prostatic neoplasms; Single photon emission computed tomography.