This paper describes the introduction of a thin titanium dioxide interlayer that serves as passivation layer and dopant source for hematite (α-Fe2 O3 ) nanoarray photoanodes. This interlayer is demonstrated to boost the photocurrent by suppressing the substrate/hematite interfacial charge recombination, and to increase the electrical conductivity by enabling Ti4+ incorporation. The dendritic nanostructure of this photoanode with an increased solid-liquid junction area further improves the surface charge collection efficiency, generating a photocurrent of about 2.5 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (vs. RHE) under air mass 1.5G illumination. A photocurrent of approximately 3.1 mA cm-2 at 1.23 V vs. RHE could be achieved by addition of an iron oxide hydroxide cocatalyst.
Keywords: dendritic nanostructures; electrocatalysis; hematite; titanium dioxide; water oxidation.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.