Nanofluidic chip for liquid TEM cell fabricated by parylene and silicon nitride direct bonding

Nanotechnology. 2017 Sep 15;28(37):375301. doi: 10.1088/1361-6528/aa8196. Epub 2017 Jul 24.

Abstract

Despite the importance of nanofluidic transmission electron microscope (TEM) chips, a simple fabrication method has yet to be developed due to the difficulty of wafer bonding techniques using a nanoscale thick bonding layer. We present a simple and robust wafer scale bonding technique using parylene as a bonding layer. A nanoscale thick parylene layer was deposited on a silicon nitride (SiN) wafer and patterned to construct nanofluidic channels. The patterned parylene layer was directly bonded to another SiN wafer by thermal surface activation and bonding, with a bonding strength of ∼3 MPa. Fourier transform infrared spectroscopy showed that carbon-oxygen bonds were generated by thermal activation. We demonstrated TEM imaging of gold nanoparticles suspended in liquid using the fabricated nanofluidic chip.