Objective: To compare image quality, radiation and contrast doses required to obtain 3D-Digital subtraction rotational angiography (3D-DSRA) with 3D-Digital rotational angiography (3D-DRA) in infants (children ≤ 2 years of age) and adults with congenital heart diseases (ACHD).
Background: 3D-DRA can be performed with radiation doses comparable to bi-plane cine-angiography. However, 3D-DRA in infants requires a large contrast volume. The resolution of 3D-DRA performed in ACHD patients is limited by their soft tissue density. We hypothesized that the use of 3D-DSRA could help alleviate these concerns.
Methods: Radiation (DAP) and contrast doses required to obtain 3D-DSRA was compared with 3D-DRA in 15 age-, size-, and intervention-matched infants and 15 ACHD patients. The diagnostic quality and utility of these two modalities were scored by 4 qualified independent observers.
Results: Both in infants and adults, the median contrast volume for 3D-DSRA was lower than 3D-DRA (0.98 vs. 1.81 mL/kg; P < 0.001 and 0.92 vs. 1.4 mL/kg; P < 0.001, respectively) with an increased DAP (median: 188 vs. 128 cGy cm2 ; P = 0.068 and 659 vs. 427 cGy cm2 ; P = 0.045, respectively). The diagnostic quality and utility scores for rotational-angiography, and 3D-reconstruction were superior for 3D-DSRA (score = 94 vs. 80%, P = 0.03 and 90 vs.79%, P = 0.01, respectively) and equivalent for multi-planar-reformation and 3D-roadmapping in ACHD patients compared with 3D-DRA. All scores for both modalities were equivalent for infants.
Conclusions: 3D-DSRA can be acquired using lower contrast volume with a mildly higher radiation dose than 3D-DRA in infants and ACHD patients. The diagnostic quality and utility scores for 3D-DSRA were higher in ACHD patients and equivalent for infants compared with 3D-DRA.
Keywords: 3D; contrast reduction; digital Subtraction; rotational angiography.
© 2017 Wiley Periodicals, Inc.