Neural progenitor cells (NPCs) grafted to sites of spinal cord injury (SCI) extend numerous axons over long distances and form new synaptic connections with host neurons. In the present study we examined the myelination of axons emerging from NPC grafts. Rat embryonic day 14 (E14) multipotent NPCs constitutively expressing GFP were grafted into adult C5 spinal cord hemisection lesions; 3months later we examined graft-derived axonal diameter and myelination using transmission electron microscopy. 104 graft-derived axons were characterized. Axon diameter ranged from 0.15 to 1.70μm, and 24% of graft-derived axons were myelinated by host oligodendrocytes caudal to the lesion. The average diameter of myelinated axons (0.72±0.3μm) was significantly larger than that of non-myelinated axons (0.61±0.2μm, p<0.05). Notably, the G-ratio of myelinated graft-derived axons (0.77±0.01) was virtually identical to that of the normal, intact spinal cord described in published reports. These findings indicate that axons emerging from early stage neural grafts into the injured spinal cord recapitulate both the small/medium size range and myelin thickness of intact spinal cord axons.
Copyright © 2017. Published by Elsevier Inc.