Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity

Sci Rep. 2017 Jul 10;7(1):4937. doi: 10.1038/s41598-017-04927-8.

Abstract

The potential effects of seasonal acclimatization on coral sensitivity to heat-stress, has received limited attention despite differing bleaching thresholds for summer and winter. In this study, we examined the response of two contrasting phenotypes, termed winter and summer, of four Caribbean reef corals to similar light and heat-stress levels. The four species investigated were categorized into two groups: species with the ability to harbour large number of symbionts, Orbicella annularis and O. faveolata, and species with reduced symbiont density (Montastraea cavernosa and Pseudodiploria strigosa). The first group showed higher capacity to enhance photosynthetic rates per area (Pmax), while Pmax enhancement in the second group was more dependent on Symbiodinium performance (Psym). In summer all four species presented higher productivity, but also higher sensitivity to lose coral photosynthesis under heat-stress. In contrast, corals in winter exhibit symbionts with higher capacity to photoacclimate to the increased levels of light-stress elicited by heat-stress. Overall, our study supports the importance of the acclimatory coral condition in addition to the previous thermal history, to determine the severity of the impact of heat-stress on coral physiology, but also the dependence of this response on the particular structural and functional traits of the species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa / physiology*
  • Climate
  • Heat-Shock Response*
  • Phenotype
  • Photochemical Processes
  • Seasons*