Blue organic light-emitting diodes (OLEDs) are necessary for flat-panel display technologies and lighting applications. To make more energy-saving, low-cost and long-lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky-blue emitters, 1,4,5-triphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEI), 1-(4-methoxyphenyl)-4,5-diphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEMeOPhI) and 1-phenyl-2,4,5-tris(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation-induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non-doped sky-blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A-1 , 2.70 lm W-1 ), 2.16 (4.33 cd A-1 , 2.59 lm W-1 ) and 3.13 % (6.97 cd A-1 , 4.74 lm W-1 ) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll-off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI-based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices.
Keywords: aggregation induced emission; electroluminescent materials; non-doped; organic electronics; organic light-emitting diodes (OLEDs).
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.