Glycosylation is an important posttranslational modification, which regulates a number of critical biological processes including cell-cell recognition, signal transduction and disease progression. Probing the glycosylation status on a specific protein of interest enables an in-depth understanding of the role of glycosylation on protein structure and function. However, methods for monitoring protein-specific glycosylation are largely lacking. Here we describe a highly sensitive fluorescence imaging strategy to visualize the protein-specific glycosylation by combining glycan metabolic tagging and in situ proximity ligation (termed GPLA). We demonstrate the visualization of sialylation, fucosylation and GalNAcylation on several important membrane proteins. Notably, the high spatial resolution of this method allows subcellular localization of the glycosylated fraction of the proteins. We further show that our strategy can be applied to image the dimerization of endogenous epidermal growth factor receptor. Thus, our study provides a unique tool to monitor the protein-specific glycosylation in a dynamic cellular context.
Copyright © 2017 Elsevier Ltd. All rights reserved.