Plasma lipids have been extensively studied in sedentary and in subjects practicing exercise training, but not in extreme inactivity as occurs in bedridden patients. This is important for the care of bedridden patients and understanding the overall plasma lipid regulation. Here, we investigated plasma lipids, lipid transfers to HDL and inflammatory markers in bedridden patients. Fasting blood samples were collected from 23 clinically stable bedridden patients under long-term care (>90 days) and 26 normolipidemic sedentary subjects, paired for age and gender. In vitro transfer of four lipids to HDL was performed by incubating plasma with donor nanoparticles containing radioactive lipids. Total (193 ± 36 vs 160 ± 43, p = 0.005), LDL (124 ± 3 vs 96 ± 33 p = 0.003) and HDL-cholesterol (45 ± 10 vs 36 ± 13, p = 0.008), apolipoprotein A-I (134 ± 20 vs 111 ± 24, p = 0.001) and oxidized LDL (53 ± 13 vs 43 ± 12, p = 0.011) were lower in bedridden patients, whereas triglycerides, apolipoprotein B, CETP and LCAT were equal in both groups. Transfers of all lipids, namely unesterified cholesterol, cholesterol esters, triglycerides and phospholipids, to HDL were lower in bedridden patients, probably due to their lower HDL-cholesterol levels. Concentrations of IL-1β, IL-6, IL-8, HGF and NGF were higher in bedridden patients compared to sedentary subjects. In conclusion, inactivity had great impact on HDL, by lowering HDL-cholesterol, apolipoprotein A-I and thereby cholesterol transfers to the lipoprotein, which suggests that inactivity may deteriorate HDL protection beyond the ordinary sedentary condition.
Keywords: Cholesterol ester transfer protein (CETP); Exercise training; High-density lipoproteins (HDL); Lipid metabolism; Nanoparticles.