Accuracy and reproducibility of fast fractional flow reserve computation from invasive coronary angiography

Int J Cardiovasc Imaging. 2017 Sep;33(9):1305-1312. doi: 10.1007/s10554-017-1190-3. Epub 2017 Jun 22.

Abstract

Fractional flow reserve (FFR) guided percutaneous coronary intervention (PCI) is associated with favourable outcome compared with revascularization based on angiographic stenosis severity alone. The feasibility of the new image-based quantitative flow ratio (QFR) assessed from 3D quantitative coronary angiography (QCA) and thrombolysis in myocardial infarction (TIMI) frame count using three different flow models has been reported recently. The aim of the current study was to assess the accuracy, and in particular, the reproducibility of these three QFR techniques when compared with invasive FFR. QFR was derived (1) from adenosine induced hyperaemic coronary angiography images (adenosine-flow QFR [aQFR]), (2) from non-hyperemic images (contrast-flow QFR [cQFR]) and (3) using a fixed empiric hyperaemic flow [fixed-flow QFR (fQFR)]. The three QFR values were calculated in 17 patients who prospectively underwent invasive FFR measurement in 20 vessels. Two independent observers performed the QFR analyses. Mean difference, standard deviation and 95% limits of agreement (LOA) between invasive FFR and aQFR, cQFR and fQFR for observer 1 were: 0.01 ± 0.04 (95% LOA: -0.07; 0.10), 0.01 ± 0.05 (95% LOA: -0.08; 0.10), 0.01 ± 0.04 (95% LOA: -0.06; 0.08) and for observer 2: 0.00 ± 0.03 (95% LOA: -0.06; 0.07), -0.01 ± 0.03 (95% LOA: -0.07; 0.05), 0.00 ± 0.03 (95% LOA: -0.06; 0.05). Values between the 2 observers were (to assess reproducibility) for aQFR: 0.01 ± 0.04 (95% LOA: -0.07; 0.09), for cQFR: 0.02 ± 0.04 (95% LOA: -0.06; 0.09) and for fQFR: 0.01 ± 0.05 (95% LOA: -0.07; 0.10). In a small number of patients we showed good accuracy of three QFR techniques (aQFR, cQFR and fQFR) to predict invasive FFR. Furthermore, good inter-observer agreement of the QFR values was observed between two independent observers.

Keywords: Computational fluid dynamics; Fractional flow reserve; Quantitative coronary angiography.

Publication types

  • Comparative Study

MeSH terms

  • Adenosine / administration & dosage
  • Aged
  • Coronary Angiography / methods*
  • Coronary Artery Disease / diagnostic imaging*
  • Coronary Artery Disease / physiopathology
  • Coronary Stenosis / diagnostic imaging*
  • Coronary Stenosis / physiopathology
  • Coronary Vessels / diagnostic imaging*
  • Coronary Vessels / physiopathology
  • Female
  • Fractional Flow Reserve, Myocardial*
  • Humans
  • Hyperemia / physiopathology
  • Imaging, Three-Dimensional
  • Male
  • Middle Aged
  • Models, Cardiovascular
  • Observer Variation
  • Predictive Value of Tests
  • Prospective Studies
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Severity of Illness Index
  • Vasodilator Agents / administration & dosage

Substances

  • Vasodilator Agents
  • Adenosine