Improving the flame retardancy of wood is an imperative yet highly challenging step in the application of wood in densely populated spaces. In this study, Mg-Al-layered double-hydroxide (LDH) coating was successfully fabricated on a wood substrate to confer flame-retardant and smoke-suppression properties. The chemical compositions and bonding states characterized by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the coating constituents of Mg-Al LDH. The coating evenly covered the sample wood surfaces and provided both mechanical enhancement and flame-retardancy effects. The limiting oxygen index of the Mg-Al LDH-coated wood increased to 39.1% from 18.9% in the untreated wood. CONE calorimetry testing revealed a 58% reduction in total smoke production and a 41% reduction in maximum smoke production ratio in the Mg-Al LDH-coated wood compared to the untreated wood; the peak heat release rate and total heat release were also reduced by 49% and 40%, respectively. The Mg-Al LDH coating is essentially hydrophilic, but simple surface modification by fluoroalkyl silane could make it superhydrophobic, with a water contact angle of 152° and a sliding angle of 8.6°. The results of this study altogether suggest that Mg-Al LDH coating is a feasible and highly effective approach to nanoconstructing wood materials with favorable flame-retardant and smoke-suppression properties.
Keywords: coatings; flame retardancy; layered double hydroxides; superhydrophobicity; wood.