Linear DNA vaccine prepared by large-scale PCR provides protective immunity against H1N1 influenza virus infection in mice

Vet Microbiol. 2017 Jun:205:124-130. doi: 10.1016/j.vetmic.2017.05.015. Epub 2017 May 22.

Abstract

Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases.

Keywords: Influenza A; Large-scale PCR; Linear DNA vaccine.

MeSH terms

  • Animals
  • Female
  • Immunization / veterinary
  • Influenza A Virus, H1N1 Subtype / genetics
  • Influenza A Virus, H1N1 Subtype / immunology*
  • Influenza Vaccines / immunology*
  • Mice
  • Mice, Inbred BALB C
  • Orthomyxoviridae Infections / prevention & control*
  • Orthomyxoviridae Infections / virology
  • Polymerase Chain Reaction / veterinary
  • Specific Pathogen-Free Organisms
  • Vaccination / veterinary*
  • Vaccines, DNA / immunology*

Substances

  • Influenza Vaccines
  • Vaccines, DNA