RNA-Sequence Analysis Reveals Differentially Expressed Genes (DEGs) in Patients Exhibiting Different Risks of Tumor Metastasis

Med Sci Monit. 2017 Jun 11:23:2842-2849. doi: 10.12659/msm.904789.

Abstract

BACKGROUND Breast cancer is one of the most common malignancies in women. In a previous study, we found that for two patients who had a high risk of lymphatic metastasis, lymphatic metastasis did not occur; whereas, for two patients who had a low risk of lymphatic metastasis, lymphatic metastasis did occur. MATERIAL AND METHODS We analyzed the differential gene expressions of these four patients by RNA-sequence. The data (HRNM_T versus HRNM_N, LRYM_T versus LRYM_N, and HRNM_T versus LRYM_T) was then processed using differentially expressed genes (DEGs) analysis, functional analysis for DEGs, and PPI network construct. RESULTS For HRNM_T versus HRNM_N, there were 224 DEGs. There were 504 DEGs for LRYM_T versus LRYM_N, and 88 DEGs for LRYM_T versus LRYM_N. For HRNM_T versus HRNM_N, DEGs were up-regulated mainly in the cell cycle, the IL-17 signaling pathway, and the progesterone-mediated oocyte maturation; DEGs were down-regulated mainly in the IL-17 signaling pathway. For LRYM_T versus LRYM_N, DEGs were up-regulated mainly in protein digestion and absorption, and cytokine-cytokine receptor interaction; DEGs were down-regulated mainly in ECM-receptor interaction. For HRNM_T versus LRYM_T, DEGs were up-regulated mainly in the PPAR signaling pathway; DEGs were downregulated mainly in the adipocytokine signaling pathway. The DEGs were screened to construct PPI networks. CONCLUSIONS The GO and KEGG functional enrichments of HRNM_T versus HRNM_N, and LRYM_T versus LRYM_N were consistent with earlier studies. For HRNM_T versus LRYM_T, DEGs were up-regulated mainly in PPAR signaling; DEGs were down-regulated mainly in the adipocytokine pathway.

MeSH terms

  • Breast Neoplasms / genetics*
  • Breast Neoplasms / pathology*
  • Down-Regulation / genetics
  • Female
  • Gene Expression Profiling*
  • Gene Expression Regulation, Neoplastic
  • Gene Ontology
  • Humans
  • Lymphatic Metastasis / pathology*
  • Middle Aged
  • Protein Interaction Maps
  • Risk Factors
  • Sequence Analysis, RNA*
  • Up-Regulation / genetics