South Africa is a country with a high incidence of tuberculosis (TB), complicated by coinfection with human immunodeficiency virus (HIV). The Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA) is used in South Africa as the test for the initial diagnosis of TB, and other molecular platforms such as the m2000 (Abbott Molecular, Des Plaines, IL, USA) are widely used for molecular monitoring of HIV load. The latter platform is now also equipped with the RealTime (RT) MTB and RealTime MTB RIF/INH assays for TB and first-line drug resistance screening but has not been evaluated in settings of HIV and TB coinfection. A prospective clinical validation study was conducted at a community health center in Johannesburg, South Africa, and consenting individuals with presumptive pulmonary TB were enrolled. The performance of the Abbott assays was compared with those of the Xpert MTB/RIF, liquid culture, drug susceptibility testing, and clinical case definitions. A statistical analysis was performed on 206 individuals (73% were HIV positive). The sensitivity and specificity of the RT MTB were 82.5% (confidence interval [CI], 67.2 to 92.7) and 93.1% (CI, 86.2 to 97.2) on raw sputum and 77.5% (CI, 61.5 to 89.2) and 95.1% (CI, 88.9 to 98.4) on concentrated sputum, respectively, compared with those from liquid culture. The RT MTB correctly identified 17/35 more smear-negative culture-positive specimens than the Xpert MTB/RIF. Both the RT MTB and the Xpert MTB/RIF displayed sensitivities >70% and specificities >90% in HIV-positive individuals. The available drug resistance results concurred with MTBDRplus and drug susceptibility profiles. The RT MTB assay has similar diagnostic performance to the Xpert MTB/RIF and is suited to testing presumptive TB patients coinfected with HIV. The existing laboratory information system connectivity, training, and technical support make this a viable polyvalent option to scale up TB alongside HIV laboratory testing services in South Africa.
Keywords: Abbott RealTime MTB; South Africa; diagnostics; human immunodeficiency virus; tuberculosis.
Copyright © 2017 American Society for Microbiology.