Pseudomonas aeruginosa is an opportunistic pathogen that presents a complex regulatory network called 'quorum-sensing', which is responsible for the transcription of genes coding for several traits implicated in its pathogenicity. Strain 148 is a dolphin isolate that has been shown to produce quorum-sensing-regulated virulence traits and to be virulent in a mouse model, despite the fact that it contains a 20-kbp deletion that eliminates from the chromosome the lasR gene and the lasI promoter. LasR is a key quorum-sensing transcriptional regulator that, when coupled with the autoinducer 3-oxo-dodecanoyl homoserine lactone (3O-C12-HSL) produced by LasI, activates transcription of genes coding for some virulence-associated traits such as elastase, lasI, rhlI and rhlR. RhlR is also a key quorum-sensing transcriptional regulator that, when interacting with the autoinducer butanoyl homoserine lactone (C4-HSL) that is produced by the synthase RhlI, activates the genes involved in the synthesis of some virulence-associated traits, as rhamnolipids and pyocyanin. We describe that in P. aeruginosa 148, the LasR/3O-C12-HSL-independent rhlR transcriptional activation is due to the release of the negative effect of Vfr (a CRP-ortholog) caused by the insertion of an IS element in vfr, and that rhlI transcription is driven from the rhlR promoter, forming the rhlR-I operon.
Keywords: LasR deficiency; atypical Pseudomonas aeruginosa strains; quorum sensing.
© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.