Assessment of changes in the content of anthocyanins, phenolic acids, and antioxidant property of Saccharomyces cerevisiae mediated fermented black rice bran

AMB Express. 2017 Dec;7(1):114. doi: 10.1186/s13568-017-0411-4. Epub 2017 Jun 5.

Abstract

Studies on phytochemical properties and bioactivities of rice bran revealed the wealth of natural complex antioxidant compounds. The composition and the properties of the rice bran get altered after fermentation by several microbes. This study was designed to optimize the black rice bran fermentation conditions for the total anthocyanin (ACN) content, total antioxidant properties, and relative activity of β-glucosidase (BGS) by Saccharomyces cerevisiae. The Box-Behnken design and response surface methodology was employed to achieve the maximum response in fermentation. The kinetic analysis of HPLC based phytochemical determination and bioconversion of ACN, and in vitro antioxidant assays were performed during fermentation. The optimum pH, temperature and NaCl concentration to achieve maximum ACN content, antioxidant capacity, and BGS activity were pH 4.0, 40 °C, and 0.5%, respectively. Bioconversion of cyanidin-3-glucoside and peonidin-3-glucoside to cyanidin and peonidin was recorded at a significant level, respectively. The maximum activity of BGS on rice bran was noticed at 24 h of fermentation. The results suggested that phytochemical content was not changed significantly, whereas the antioxidant properties of rice bran were slightly enhanced after 24 h of fermentation. Additional detailed in vivo evaluation is required to explain the impact of submerged fermentation on the bioactivity of rice bran.

Keywords: Anthocyanin; Antioxidant capacity; Fermented rice bran; Saccharomyces cerevisiae; β-glucosidase.