The stroma of human bone marrow contains a population of skeletal stem cells (hBM-MSC) which are common ancestors, among the others, of osteoblasts and adipocytes. It has been proposed that the imbalance between hBM-MSC osteogenesis and adipogenesis, which naturally accompanies bone marrow senescence, may contribute to the development of bone-associated diseases, like osteoporosis. The possibility to reproduce this mechanism in vitro has been demonstrated, providing a good model to disclose the details of the complex bone-fat generation homeostasis. Nevertheless, the lack of a simple approach to quantitatively assess the actual stage of a cellular population hindered the adoption of this in vitro model. In this work, the direct differentiation of hBM-MSCs towards a single (osteo or adipo) lineage was characterized using quantitative biophysical and biological approaches, together with the parallel process of trans-differentiation from one lineage to the other. The results confirm that the original plasticity of hBM-MSCs is maintained along the initial stages of the differentiation, showing that in vitro conversion of pre-osteoblasts into adipocytes and, vice versa, of pre-adipocytes into osteoblasts is extremely efficient, comparable with the direct differentiation. Moreover, a method based on digital holography is proposed, providing a quantitative indication of the phenotype stage along differentiation.
Keywords: Adipocyte; Morphometry; Osteoblast; Quantitative phase imaging; Real time qPCR.
Copyright © 2017 Elsevier B.V. All rights reserved.