Treatment resistance in metastatic melanoma is a longstanding issue. Current targeted therapy regimes in melanoma largely target the proliferating cancer population, leaving slow-cycling cancer cells undamaged. Consequently, slow-cycling cells are enriched upon drug therapy and can remain in the body for years until acquiring proliferative potential that triggers cancer relapse. Here we overview the molecular mechanisms of slow-cycling cells that underlie treatment resistance in melanoma. Three main areas of molecular reprogramming are discussed that mediate slow cycling and treatment resistance. First, a low microphthalmia-associated transcription factor (MITF) dedifferentiated state activates various signaling pathways. This includes WNT5A, EGFR, as well as other signaling activators, such as AXL and NF-κB. Second, the chromatin-remodeling factor Jumonji/ARID domain-containing protein 1B (JARID1B, KDM5B) orchestrates and maintains slow cycling and treatment resistance in a small subpopulation of melanoma cells. Finally, a shift in metabolic state toward oxidative phosphorylation has been demonstrated to regulate treatment resistance in slow-cycling cells. Elucidation of the underlying processes of slow cycling and its utilization by melanoma cells may reveal new vulnerable characteristics as therapeutic targets. Moreover, combining current therapies with targeting slow-cycling subpopulations of melanoma cells may allow for more durable and greater treatment responses. Mol Cancer Ther; 16(6); 1002-9. ©2017 AACR.
©2017 American Association for Cancer Research.