Due to the rising global environment protection awareness, recycling strategies that comply with the circular economy principles are needed. Polyesters are among the most used materials in the textile industry; therefore, achieving a complete poly(ethylene terephthalate) (PET) hydrolysis in an environmentally friendly way is a current challenge. In this work, a chemo-enzymatic treatment was developed to recover the PET building blocks, namely terephthalic acid (TA) and ethylene glycol. To monitor the monomer and oligomer content in solid samples, a Fourier-transformed Raman method was successfully developed. A shift of the free carboxylic groups (1632 cm-1 ) of TA into the deprotonated state (1604 and 1398 cm-1 ) was observed and bands at 1728 and 1398 cm-1 were used to assess purity of TA after the chemo-enzymatic PET hydrolysis. The chemical treatment, performed under neutral conditions (T = 250 °C, P = 40 bar), led to conversion of PET into 85% TA and small oligomers. The latter were hydrolysed in a second step using the Humicola insolens cutinase (HiC) yielding 97% pure TA, therefore comparable with the commercial synthesis-grade TA (98%).
© 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.