Depressed Na+/K+-ATPase activity has long been reported to be involved in diabetic-related cardiomyocyte death and cardiac dysfunction. However, the nature of directly regulating Na+-K+-ATPase in diabetic-related myocardial diseases remains unknown. Hyperglycemia is believed as one of major factors responsible for diabetic-related myocardial apoptosis and dysfunction. In this study, whether inhibiting Na+-K+-ATPase by ouabain or activating Na+-K+-ATPase by DRm217 has functions on high glucose (HG) -induced myocardial injury was investigated. Here we found that addition of DRm217 or ouabain to HG-treated cells had opposite effects. DRm217 decreased but ouabain increased HG-induced cell injury and apoptosis. This was mediated by changing Na+-K+-ATPase activity and Na+-K+-ATPase cell surface expression. The inhibition of Na+-K+-ATPase endocytosis alleviated HG-induced ROS accumulation. Na+-K+-ATPase·c-Src dependent NADPH oxidase/ROS pathway was also involved in the effects of ouabain and DRm217 on HG-induced cell injury. These novel results may help us to understand the important role of the Na+-K+-ATPase in diabetic cardiovascular diseases.
Keywords: DRm217; High glucose; NADPH oxidase; Na(+)-K(+)-ATPase; Ouabain; ROS; c-Src.
Copyright © 2017 Elsevier Inc. All rights reserved.