Cytotoxic T lymphocyte antigen-4 (CTLA-4) is expressed during cluster of differentiation (CD)4+ T-cell activation and terminates immune responses by interrupting CD28-enhanced activation. In addition, CTLA-4 is known to be constitutively expressed in regulatory T-cells (Tregs) and to contribute to immune suppression by enhancing the suppressive function of Tregs. However, the molecular mechanisms underlying CTLA-4-mediated Treg suppression remains incompletely understood. Furthermore, it is uncertain whether the in vivo immune suppressive functions of CTLA-4 are mediated only by a reduction in the level of conventional T-cell activity, or enhancement of Treg function. The present study demonstrated that combination therapy with an anti-CTLA-4 monoclonal antibody and dendritic cell-mediated radioimmunotherapy (IR/DC) was able to promote an antitumor response and influence Treg function in a mouse model of lung cancer. Cell surface markers, including CTLA-4, CD25 and CD4, were analyzed using flow cytometry, and T-cell activities were measured using ELISPOT and cytotoxicity assays. It was revealed that anti-CTLA-4 combined treatment with IR/DC immunotherapy may execute a more powerful and effective anti-tumor immunity through the inhibition of Treg function.
Keywords: CTLA-4; Lewis lung carcinoma; radioimmunotherapy; regulatory T cells.