Background: Cancer is an evolutionary process characterized by the accumulation of somatic mutations in a population of cells that form a tumor. One frequent type of mutations is copy number aberrations, which alter the number of copies of genomic regions. The number of copies of each position along a chromosome constitutes the chromosome's copy-number profile. Understanding how such profiles evolve in cancer can assist in both diagnosis and prognosis.
Results: We model the evolution of a tumor by segmental deletions and amplifications, and gauge distance from profile [Formula: see text] to [Formula: see text] by the minimum number of events needed to transform [Formula: see text] into [Formula: see text]. Given two profiles, our first problem aims to find a parental profile that minimizes the sum of distances to its children. Given k profiles, the second, more general problem, seeks a phylogenetic tree, whose k leaves are labeled by the k given profiles and whose internal vertices are labeled by ancestral profiles such that the sum of edge distances is minimum.
Conclusions: For the former problem we give a pseudo-polynomial dynamic programming algorithm that is linear in the profile length, and an integer linear program formulation. For the latter problem we show it is NP-hard and give an integer linear program formulation that scales to practical problem instance sizes. We assess the efficiency and quality of our algorithms on simulated instances.
Availability: https://github.com/raphael-group/CNT-ILP.
Keywords: Cancer; Copy-number variant; Maximum parsimony; Phylogeny; Somatic mutation.