From Engrams to Pathologies of the Brain

Front Neural Circuits. 2017 Apr 7:11:23. doi: 10.3389/fncir.2017.00023. eCollection 2017.

Abstract

Memories are the experiential threads that tie our past to the present. The biological realization of a memory is termed an engram-the enduring biochemical and physiological processes that enable learning and retrieval. The past decade has witnessed an explosion of engram research that suggests we are closing in on boundary conditions for what qualifies as the physical manifestation of memory. In this review, we provide a brief history of engram research, followed by an overview of the many rodent models available to probe memory with intersectional strategies that have yielded unprecedented spatial and temporal resolution over defined sets of cells. We then discuss the limitations and controversies surrounding engram research and subsequently attempt to reconcile many of these views both with data and by proposing a conceptual shift in the strategies utilized to study memory. We finally bridge this literature with human memory research and disorders of the brain and end by providing an experimental blueprint for future engram studies in mammals. Collectively, we believe that we are in an era of neuroscience where engram research has transitioned from ephemeral and philosophical concepts to provisional, tractable, experimental frameworks for studying the cellular, circuit and behavioral manifestations of memory.

Keywords: amygdala; behavior; circuits; engram; hippocampus; memory; optogenetics; psychiatric disorders.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain / cytology*
  • Brain / physiology*
  • Humans
  • Memory / physiology*
  • Models, Animal
  • Neurons / physiology*