Thermalization and Return to Equilibrium on Finite Quantum Lattice Systems

Phys Rev Lett. 2017 Apr 7;118(14):140601. doi: 10.1103/PhysRevLett.118.140601. Epub 2017 Apr 3.

Abstract

Thermal states are the bedrock of statistical physics. Nevertheless, when and how they actually arise in closed quantum systems is not fully understood. We consider this question for systems with local Hamiltonians on finite quantum lattices. In a first step, we show that states with exponentially decaying correlations equilibrate after a quantum quench. Then, we show that the equilibrium state is locally equivalent to a thermal state, provided that the free energy of the equilibrium state is sufficiently small and the thermal state has exponentially decaying correlations. As an application, we look at a related important question: When are thermal states stable against noise? In other words, if we locally disturb a closed quantum system in a thermal state, will it return to thermal equilibrium? We rigorously show that this occurs when the correlations in the thermal state are exponentially decaying. All our results come with finite-size bounds, which are crucial for the growing field of quantum thermodynamics and other physical applications.