Background: In this phase I/II study, we assessed the safety and initial efficacy of stereotactic body radiotherapy (SBRT) for lung tumors with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm.
Methods: Study subjects had histologically confirmed primary non-small-cell lung cancer staged as T1a-T2aN0M0 and pulmonary oligometastasis. The primary endpoint was the incidence of Grade ≥3 radiation pneumonitis (RP) within 180 days of the start of SBRT. The secondary endpoint was local control and overall survival rates. Five patients were initially enrolled at level 1 [50 Gy/4 fractions (Fr)]; during the observation period, level 0 (45 Gy/4 Fr) was opened. The dose was escalated to the next level when grade ≥3 RP was observed in 0 out of 5 or 1 out of 10 patients. Virtual quality assurance planning was performed for 60 Gy/4 Fr; however, dose constraints for the organs at risk did not appear to be within acceptable ranges. Therefore, level 2 (55 Gy/4 Fr) was regarded as the upper limit. After the recommended dose (RD) was established, 15 additional patients were enrolled at the RD. The prescribed dose was normalized at the 95% volume border of the planning target volume based on the Monte Carlo algorithm.
Results: Between September 2011 and September 2015, 40 patients (primary 30; metastasis 10) were enrolled. Five patients were enrolled at level 0, 15 at level 1, and 20 at level 2. Only one grade 3 RP was observed at level 1. Two-year local control and overall survival rates were 98 and 81%, respectively.
Conclusion: The RD was 55 Gy/4 Fr. SBRT with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm was tolerated well and appeared to be effective for solitary lung tumors.
Keywords: CyberKnife; Lung tumors; Monte Carlo algorithm; Phase I/II study; Stereotactic body radiotherapy; Tracking.