Purpose: To compare the diagnostic performance of positron emission tomography with [18F] fluoro-2-deoxy-glucose (FDG-PET) coregistered with magnetic resonance imaging (FDG-PET/MRI), MRI with and without diffusion-weighted imaging (DWI), FDG-PET fused with computed tomography (FDG-PET/CT) with brain contrast-enhanced (CE-) MRI, and routine radiological examination for assessment of postoperative recurrence in nonsmall-cell lung cancer (NSCLC) patients.
Materials and methods: 96 consecutive postoperative NSCLC patients (52 men, 44 women; mean age 72 years) prospectively underwent whole-body 3T MRI with and without DWI; PET/CTs and routine radiological examinations consisted of CE-brain MRI, whole-body CE-CT, and bone scintigraphy. The patients were divided into a recurrence (n = 17) and a nonrecurrence (n = 79) group based on pathological and follow-up examinations. All coregistered PET/MRIs were generated by proprietary software. The probability of recurrence was visually assessed on a per-patient basis. Receiver operating characteristic analyses were used to compare the diagnostic performance of all methods. Finally, diagnostic capabilities were compared by means of McNemar's test.
Results: Areas under the curves (Azs) were significantly larger for PET/MRI and whole-body MRI with DWI (Az = 0.99) than for PET/CT (Az = 0.92, P < 0.05) and conventional radiological examination (Az = 0.91, P < 0.05). Specificity and accuracy of PET/MRI and MRI with and without DWI were significantly higher than those of PET/CT (P < 0.05) and routine radiological examination (P < 0.05).
Conclusion: Whole-body FDG-PET/MRI and MRI with DWI were found to be more specific and accurate than FDG-PET/CT and routine radiological examinations for assessment of recurrence in NSCLC patients, although MRI with and without DWI demonstrated slightly lower sensitivity than PET/CT.
Level of evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1707-1717.
Keywords: lung neoplasm; magnetic resonance imaging; neoplasm recurrence; positron-emission tomography and computed tomography; sensitivity and specificity.
© 2017 Wiley Periodicals, Inc.