Reductive amination derivatization for the quantification of garlic components by isotope dilution analysis

Food Chem. 2017 Sep 1:230:1-5. doi: 10.1016/j.foodchem.2017.02.119. Epub 2017 Feb 27.

Abstract

In this work, we synthesized internal standards for four garlic organosulfur compounds (OSCs) by reductive amination with 13C, D2-formaldehyde, and developed an isotope dilution analysis method to quantitate these organosulfur components in garlic samples. Internal standards were synthesized for internal absolute quantification of S-allylcysteine (SAC), S-allylcysteine sulfoxide (alliin), S-methylcysteine (SMC), and S-ethylcysteine (SEC). We used a multiple reaction monitoring (MRM) to detect 13C, D2-formaldehyde-modified OSCs by ultrahigh-performance liquid phase chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and obtained MS spectra showing different ratios of 13C, D2-formaldehyde-modified and H2-formaldehyde-modified compounds. The resulting labeled and unlabeled OSCs were exhibited correlation coefficient (R2) ranged from 0.9989 to 0.9994, respectively. The average recoveries for four OSCs at three concentration levels ranged from 89% to 105%. By 13C, D2-formaldehyde and sodium cyanoborohydride, the reductive amination-based method can be utilized to generate novel internal standard for isotope dilution and to extend the quantitative application.

Keywords: Absolute quantification; Garlic; Isotope dilution; Organosulfur compounds (OSCs); Reductive amination; UHPLC–MS/MS.

MeSH terms

  • Amination
  • Borohydrides / chemistry
  • Carbon Isotopes
  • Chromatography, High Pressure Liquid
  • Cysteine / analogs & derivatives*
  • Cysteine / analysis
  • Cysteine / chemistry
  • Formaldehyde / chemistry
  • Garlic / chemistry*
  • Reference Standards
  • Tandem Mass Spectrometry

Substances

  • Borohydrides
  • Carbon Isotopes
  • Formaldehyde
  • alliin
  • S-allylcysteine
  • S-methylcysteine
  • S-ethylcysteine
  • sodium cyanoborohydride
  • Cysteine