Specific binding sites for (3H)-leukotriene D4 (LTD4) were identified on guinea-pig alveolar macrophages (GPAMs) using high specific activity (3H)-LTD4, in the presence or absence of unlabelled LTD4. The time required for (3H)-LTD4 binding to reach equilibrium was approximately 15 min at 0 degrees C. The binding was saturable, reversible and specific. The dissociation constant (Kd) and site density (Bmax) were found to be 2.33 +/- 0.38 nM and 560 +/- 48 fmol/10(6) cells, respectively, as determined from Scatchard analysis. In competition studies for the displacement of (3H)-LTD4 from binding sites, leukotrienes B4, C4, D4 and E4, and the peptidoleukotriene antagonist FPL-55712 revealed an order of potency of LTD4 (Ki 3.9 nM) greater than LTE4 (Ki 243.9 nM) greater than LTC4 (Ki 796.9 nM) greater than FPL-55712 (Ki 17.6 microM). Concentrations of LTB4 up to 10 microM did not displace the (3H)-LTD4 binding. Bioconversion of LTD4 by GPAMs, as determined by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC), was less than 3% in 30 min incubation periods. It is concluded that these binding sites may be receptors for LTD4 on GPAMs. Since LTD4 is produced by GPAMs, it is postulated that endogenous LTD4 may modulate thromboxane synthesis and lung constriction.