Diabetes mellitus (DM) has been regarded as an important risk factor for Alzheimer's disease (AD), and diabetic patients and animals have shown cognitive dysfunction. More research has shown that the amyloid-β (Aβ), which is a hallmark of AD, was found deposited in the hippocampus of diabetic rats. This Aβ accumulation is regulated by the receptor for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein (LRP-1). However, the expression of RAGE and LRP-1 in diabetic rats is not very clear. In the present study, we used streptozotocin (STZ)-induced diabetic rats to investigate whether the expression of RAGE and LRP-1 is related to Aβ1-42 deposition at the hippocampus, prefrontal lobe, and amygdala in DM. We found that diabetic rats had longer escape latency and less frequency of entrance into the target zone than that of the control group (P < 0.05) in the Morris water maze (MWM) test. The Aβ1-42 expression in the hippocampus and prefrontal lobe significantly increased in the DM group compared to the control group (P < 0.05). RAGE increased (P < 0.05), while LRP-1 decreased (P < 0.05) in the hippocampus tissue and prefrontal lobe tissue of DM rats. The Aβ1-42 deposition was correlated with RAGE positively (P < 0.05), but with LRP-1 negatively (P < 0.05). Further, the expression levels of Aβ1-42, RAGE, and LRP-1 were not changed in the amygdala between the diabetic rats and the control group. These findings indicated that upregulating RAGE and/or downregulating LRP-1 at the hippocampus and the prefrontal lobe contributed to the Aβ1-42 accumulation and then further promoted the cognitive impairment of diabetic rats.
Keywords: Amyloid; Cognition; Diabetes; LRP-1; Rage.