The relatively recent development of industries working with nanomaterials has created challenges for exposure assessment. In this article, we propose a relatively simple approach to assessing nanomaterial exposures for the purposes of epidemiological studies of workers in these industries. This method consists of an onsite industrial hygiene visit of facilities carried out individually and a description of workstations where nano-objects and their agglomerates and aggregates (NOAA) are present using a standardized tool, the Onsite technical logbook. To assess its reliability, we implemented this approach for assessing exposure to NOAA in workplaces at seven workstations which synthesize and functionalize carbon nanotubes. The prediction of exposure to NOAA using this method exhibited substantial agreement with that of the reference method, the latter being based on an onsite group visit, an expert's report and exposure measurements (Cohen kappa = 0.70, sensitivity = 0.88, specificity = 0.92). Intramethod comparison of results for exposure prediction showed moderate agreement between the three evaluators (two program team evaluators and one external evaluator) (weighted Fleiss kappa = 0.60, P = 0.003). Interevaluator reliability of the semiquantitative exposure characterization results was excellent between the two evaluators from the program team (Spearman rho = 0.93, P = 0.03) and fair when these two evaluators' results were compared with the external evaluator's results. The project was undertaken within the framework of the French epidemiological surveillance program EpiNano. This study allowed a first reliability assessment of the EpiNano method. However, to further validate this method a comparison with robust quantitative exposure measurement data is necessary.
Keywords: epidemiology; exposure registry; inhalation; nano-objects and their agglomerates and aggregates (NOAA); occupational exposure.
© The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.