Here we report the rational design of a synthetic molecular nanodevice that is directly inspired from hemoglobin, a highly evolved protein whose oxygen-carrying activity is finely regulated by a sophisticated network of control mechanisms. Inspired by the impressive performance of hemoglobin we have designed and engineered in vitro a synthetic DNA-based nanodevice containing up to four interacting binding sites that, like hemoglobin, can load and release a cargo over narrow concentration ranges, and whose affinity can be finely controlled via both allosteric effectors and environmental cues like pH and temperature. As the first example of a synthetic DNA nanodevice that undergoes a complex network of nature-inspired control mechanisms, this represents an important step toward the use of similar nanodevices for diagnostic and drug-delivery applications.
Keywords: DNA nanomachines; DNA nanoswitches; DNA nanotechnology; cooperativity; molecular devices.