Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell

Acc Chem Res. 2017 Apr 18;50(4):1059-1068. doi: 10.1021/acs.accounts.7b00040. Epub 2017 Mar 29.

Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs that act as pivotal post-transcriptional regulators of gene expression, thus involving in many fundamental cellular processes such as cell proliferation, migration, and canceration. The detection of miRNAs has attracted significant interest, as abnormal miRNA expression is identified to contribute to serious human diseases such as cancers. Particularly, miRNAs in peripheral blood have recently been recognized as important biomarkers potential for liquid biopsy. Furthermore, as miRNAs are expressed heterogeneously in different cells, investigations into single-cell miRNA expression will be of great value for resolving miRNA-mediated regulatory circuits and the complexity and heterogeneity of miRNA-related diseases. Thus, the development of miRNA detection methods, especially for complex clinic samples and single cells is in great demand. In this Account, we will present recent progress in the design and application of isothermal amplification enabling miRNA detection transition from the test tube to the clinical sample and single cell, which will significantly advance our knowledge of miRNA functions and disease associations, as well as its translation in clinical diagnostics. miRNAs present a huge challenge in detection because of their extremely short length (∼22 nucleotides) and sequence homology (even with only single-nucleotide variation). The conventional golden method for nucleic acid detection, quantitative PCR (qPCR), is not amenable to directly detecting short RNAs and hardly enables distinguishing between miRNA family members with very similar sequences. Alternatively, isothermal amplification has emerged as a powerful method for quantification of nucleic acids and attracts broad interest for utilization in developing miRNA assays. Compared to PCR, isothermal amplification can be performed without precise control of temperature cycling and is well fit for detecting short RNA or DNA. We and other groups are seeking methods based on isothermal amplification for detecting miRNA with high specificity (single-nucleotide resolution) and sensitivity (detection limit reaching femtomolar or even attomolar level). These methods have recently been demonstrated to quantify miRNA in clinical samples (tissues, serum, and plasma). Remarkably, attributed to the mild reaction conditions, isothermal amplification can be performed inside cells, which has recently enabled miRNA detection in single cells. The localized in situ amplification even enables imaging of miRNA at the single-molecule level. The single-cell miRNA profiling data clearly shows that genetically identical cells exhibit significant cell-to-cell variation in miRNA expression. The leap of miRNA detection achievements will significantly contribute to its full clinical adoption and translation and give us new insights into miRNA cellular functions and disease associations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • In Vitro Techniques
  • MicroRNAs / analysis*
  • MicroRNAs / genetics
  • MicroRNAs / metabolism
  • Single-Cell Analysis*
  • Temperature*

Substances

  • MicroRNAs