In vivo response to decellularized mesothelium scaffolds

J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):716-725. doi: 10.1002/jbm.b.33879. Epub 2017 Mar 21.

Abstract

Biological surgical scaffolds are used in plastic and reconstructive surgery to support structural reinforcement and regeneration of soft tissue defects. Macrophage and fibroblast cell populations heavily regulate scaffold integration into host tissue following implantation. In the present study, the biological host response to a commercially available surgical scaffold (Meso BioMatrix Surgical Mesh (MBM)) was investigated for up to 9 weeks after subcutaneous implantation; this scaffold promoted superior cell migration and infiltration previously in in vitro studies relative to other commercially available scaffolds. Infiltrating macrophages and fibroblasts phenotypes were assessed for evidence of inflammation and remodeling. At week 1, macrophages were the dominant cell population, but fibroblasts were most abundant at subsequent time points. At week 4, the scaffold supported inflammation modulation as indicated by M1 to M2 macrophage polarization; the foreign body giant cell response resolved by week 9. Unexpectedly, a fibroblast subpopulation expressed macrophage phenotypic markers, following a similar trend in transitioning from a proinflammatory to anti-inflammatory phenotype. Also, α-smooth muscle actin-expressing myofibroblasts were abundant at weeks 4 and 9, mirroring collagen expression and remodeling activity. MBM supported physiologic responses observed during normal wound healing, including cellular infiltration, host tissue ingrowth, remodeling of matrix proteins, and immune modulation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 716-725, 2018.

Keywords: ECM (extracellular matrix); decellularization; fibroblast; macrophage; wound healing.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Epithelium / chemistry*
  • Female
  • Fibroblasts / metabolism
  • Foreign-Body Reaction / metabolism
  • Giant Cells, Foreign-Body / metabolism
  • Macrophages / metabolism
  • Materials Testing*
  • Mice
  • Surgical Mesh*
  • Tissue Scaffolds / chemistry*
  • Wound Healing*